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SUMMARY 

An approximate  method   for determining  the   far  field   flow  properties of  a 
rocket  exhausting  into a   vacuum is presented.     The  technique  described   is based  on 
radial   flow and  assumes  a density vtriation both along and  normal   to  the  Jet center- 
line.    The resulting  jet   flow field  is  compared with solutions  by  the method of 
characteristics  and  is  shown to have good  agreement.    Example calculations are 
provided to demonstrate  the  present method. 
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NOMENCLATURE 

a Speed of sound 

A Area 

E Constant defined by Equation (13) 

E* Constant defined by Equation (26) 

h Radius from nozzle exit 

M Local Mach number at the point (h, 0 ) 

H' Local Mach number at the point (h, Ö ) in the flow field of a sonic nozzle 

N Constant defined in Equation (4) 

P Pressure 

r Radius 

S Control surfcK.e 

V Velocity 

X Axial distance from nozzle exit 

Y Distance normal to Jet cencerllne 

7 Gas ratio of specific heats 

p Gas density 

Subscripts 

e Nozzle exit conditions 

* Nozzle throat conditions 

o Stagnation (chamber) conditions 

a Refers to spherical cap 
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OBJECTIVES 

The  objective of this  technical  note  is to describe  an approximate method 
for determining  the   far field  flow  properties  for a  rocket  exhausting  into a vacuum. 

CONCLUSIONS AND RECOMMENDATIONS 

An approximate method  for determining the   far  field   flow properties   for  a 
rocket  exhausting   into a vacuum has  been presented.    A  comparison of Mach number 
distribution both along and normal   to  the  Jet axis  with  solutions  by  the method of 
characteristics  indicates good  agreement.    The present method  should provide an 
adequate approximation  for rocket   flow   field problems  in a  vacuum.    Recommendations 
are the  following: 

(1) Investigate  further   the   limits of this approximate  solution   for: 

(a) Nonvacuum conditions. 

(b) Nozzles with noncircular cross  sections  at  the exit plane. 

(2) Develop an improved approximate method which describes the exhaust 
flow past 90 degrees. (The present method is limited to expansion 
angles  less  than 90 degrees.) 



SECTION  1 

INTRODUCTION 

When a  rocket  exhausts  into a vacuum,  the  flow undergoes a  large expan- 
sion and the  resulting  free jet of gas  occupies a considerable  volume  in space. 
The presence of this   large free jet of gas  can produce serious  aerodynamic, aero- 
thermal, and communications problems.     Some of  these problems are:     the effects of 
Jet   Impingement   forces  on the dynamics of  nearby surfaces;   the  exhaust  blast on 
the  surface of the moon dur.'ng ascent  or descent of a rocket;   the heating of nearby 
surfaces submerged  in the rocket plume;  and  the effects of  the  exhaust  gas on 
visual or other guidance  information. 

In order  to   Investigate these  problems, an adequate definition of the 
rocket exhaust  flow field  Is  necessary.     In most cf.ses,   the method of character- 
istics has been utilized  to determine properties  in  the rocket   flow  field.    How- 
ever,  the procedure  Is quite  laborious,  costly,  and generally requires machine 
computations.    To provide a more convenient  and practicable means   for  defining  the 
rocket  flow field  In a vacuum, an approximate method  is described  In this  technical 
note.    The technique  can be utilized to calculate pressures, densities,   temperatures 
and Mach numbers  in the rocket  flow field  from a knowledge of only the nozzle geom- 
etry and the ratio of  specific beatB  for  the gas. 



SECTION 2 

ANALYSIS 

Consider the exhaust Jet of an Ideal Invlscld gas Issuing Isentroplcally 
from a nearly parallel nozzle (of exit radios re and exlL Mach number Me) Into a 
vacuum.  The flow Is continuous and steady, and the ratio of specific heats, 7. 
Is ass imed constant. 

At distances large compared to the nozzle dimensions, theoretical solu- 
tions for the exhaust flow In a vacuum show that the flow field approaches radial 
flow. I.e., the streamlines are straight and appear to emanate from a common nource 
(see Figure 1). The basic solution of radial flow stipulates that the mass flux, 
PV, varies as 1/h , where h is the radial distance from the nozzle.  In a vacuum, 
the pressure rapidly approaches zero so that the velocity can be assumed constant. 
In this case, the density takes the form / ~ I/hr. 

Most of the mass and moinentum of the jet are concentrated near the jet 
centerline, so that the variation of density in the direction normal to the jet 
centerline must be considered.  Reference 1 assumes that the density on a spherical 
cap at a distance h from the nozzle exit is of the form: 

P„ r 
\    e 

(cos 9) (1) 

where 0    is tne azimuthal angle measured from the jet centerline, and B and K are 
constants. By integrating the conservation of mass and momentum equations, and 
neglecting terms of order 1/Mg, Reference 1 has obtained a first-order solution for 
the density profile: 

P.  2 
(cos e) (2) 



2 2 
where K ^ / ( 7--1) M  . The above expression has t.^,- restriction that M » 1 and 
h e e 

f »1. 
e 

In the present analysis, a more general solution which Includes the effects 
of higher order terms is sought, I.e., it is desirable to remove the restriction in 
Equation (2) that Mg » 1. The basic approach to the problem is that of Reference 1. 
A density profile similar in form to Equation (1) is assumed.  The continuity and 
momentum equations are then solved simultaneously to obtain the density distribution 
in the jet flow field.  From this result, a generalized me :hod for calculating con- 
tours of constant Mach number for a rocket flow field in a vacuum is derived. 

The system under analysis is shown in Figure 2 (a) and (b).  The flow is 
considered radial and axially symmetric.  The surface S is the sum of the hemispher- 
ical surface (A ) of radius h, and its projection on the Y-Z plane. Ay.2-  Flow 
enters the control surface only through the nozzle exit area, A , and exits through 
the surface, A8. 

On the spherical cap, the velocity is assumed radial and constant.  That 
18,* 

V - V    ti (3) 
s   max 

where V|nax is the maximum velocity obtainable by expanding to zero pressure, and n 
is a unit vector* everywhere normal to the surface S.  The density profile on the 
surface, A , is assumed to be of the form: 

L       E   I Ve     1     |h      "2      ,       flvN ,., 
-r ' ö \ TT        '~\ (co8 ü) (4) p        2       V        I       r re \   max/ 

where  E and N  are  constants. 

For   steady   flow,   the   integral   form of  the  continuity  equation  is: 

Q p (V  • n] >)  dS  - 0 

S 

Over  the  surface  S   (see Figure  2),   the above   integral   is  written: 

|]p(V8  • "> dAs "  ^eW  '0 (5) 

Introducing  the  expressions   for V     from Equation   (3)   and   p    from Equation  (4),   then 

♦Vector quantities  are sytrbolized  by  bold-face  letters. 



Equation   (5)   becomes: 

nil 

f 
E(!e 

e  2    V ~ I (cos^ ) 
e max/ \    e / 

Integrating  and  solving   for  E,   we  obtain: 

E   =   N+l 

V r   •  n 
max 

2rT h  8in6 

(6) 

■id    - £ V A re e e 

(continui ty) (7) 

Conservation  of  momentum  need   be  considertJ   only  in  the  X-dlrection,   since 
the   flow  is  axially symmetric.     The  Integral   form  of  the  conservation  of momentum 
equation   in  the X-direction   is: 

Hp(V   ■ n)  dS  (V   •  i)    +      Qpitn   -  I) dS   * 0 

For   the   surface S,   the   above   integral   becomes; 

fff /:(V     • r)   (Vo    • I)   + p(n   •  I) dA p V       +  p    I    A 
e  e el      e 

(8) 

Substitution of the expressions for V,, and p (from Equations (3) and (4) 
8 

respectively) into Equation (8) results in the integral: 

7T /2 

E I   e    h      ,   , ,N 
/e 2  V  \r (c08 J) 

max    e 
max 

V   t\      \ 
max 

2 7T h sinÖ 

p V  + p 
, e e    e 

\ 

^eVe  I^T^-^e 

(9) 

d0 

Solving Equation (9) for E, we obtain: 

V 
E - (N + 2) 

\ max 
1 -•■ 

\ 
7M' 

(momentum) (10) 

The constant E can now be determined by solving Equations (7) and (10) 



simultaneously.     Thus, 

E = 
max 

1 +  

ynlj 

i - ^- \ li + 
(ii) 

max I 7 M' 

The velocity ratio, (V /V   ), is related to the nozzle exit Mach number, M , by 
the adiabatic relationship 

(12) 
max •\  ,1 + 

(7-DM; 

Then, Equation (11) becomes: 

1 + 
7M' 

E = — 

v + 
1 + 

1   \ 
(13) 

(7-l)Mg     i   7M^ 

Substituting Equation (7) into Equation (4), the density distribution in the flow 
field is obtained 

E 
2 

\ 
-2 

(E-l) 

max 
T" 1   (cos Ö ) (14) 

where E  is defined  by Equation  (13)   and (Vg/V,,.^)  by Equation  (12),    It   is  seen  that 

both E and   (V /V       )   are   functions  of  only M    and   the  ratio  of  specific  heats,     y   . 
e    max e 

Thus,   for  a given gas  and  nozzle  exit  Mach  number,  M  ,   the  density depends  only on 
the  location  in  the   flow  field   (h,0). e 

Assuming   that  the  flow  inside  of  the  nozzle   is  isentropic,   the Mach 
number distribution  in  the   flow   field  can   be derived   from  thr   isentropic  relation- 
ship  between density  and Mach  number. 

-5- 



That   is, 

Pn 
.        [ i+    -^   M: 

1-7 
(15) 

where   p      is  the  stagnation   (chamber)  density. 

Solving  the  above  expression  for  the Mach  number,   we obtain 

r /     \ 

M i_  I U- 
7-1 p 

1-7 

0I 

^ 1/2 
i 

/ 

The  density  ratio,    -*—■  ,   can  be  expressed 

(16) 

P     P    P r o      e      o 
(17) 

Substituting Equation (14) into Equation (17), then 

i Ir-l-j    (cose) 
max i \   e; 

(E-l) p 
-f (18) 

From  continuity  considerations, 

A    y 

^eVe     =      P*a*   1  A 

Thus, Equation (18) becomes: 

(19) 

\ 

Introducing the isentropic relationships, 

(E-l) 

' e ' 

P-a *-* 

P V o max 

1 

P 
+ ll ''I 

-T-      (20) 

(21) 



and 

max 

\    1/2 
y -l  i ,JL4 i (22) 

Then Equation (20) is written: 

, -2 
p     E  'h_ 

(E-l) / AJ 
(cos e) 

1-7 

ei lA'M 2/ 

1/2 

(23) 

Combining Equation (23) with Equation (16), the final form for the Mach number is 
obtained: 

M 

1 

/M 
7-1 \  2  1 A 

/ \ 

\"2 (E-l)  ' 1"7 /   ^  1/2 h.     , n/E 1) Ji±l till. 
— i    (cos f)        0        ^^ 

7+li 

/ 

1-7 

1/ 
7 

1/2 

(24) 
where E is given by Equation (13) 

Significant to note, for a given gas and nozzle geometry, the Mach number 
depends only on the location in the flow field (h, Q).    The above expression, 
Equation (24) is general and can be used to find local Mach numbers in the flow 
field for any specified M  and 7 .  The main restriction, implied in the radial flow 

assumption, is that — »1. 

Equation (24) has been applied to construct contours of constant Mach 
numbers in Figure 3 for Me » 2.21 and 7 = 1.24. Axial distances from the nozzle 
exit are given by X and distances normal to the jet centerline by Y.  Evidently 
h2 ■ X2 + Y2, and 0 = Tan-1 Y/X.  The distances X and Y are normalized by the 
nozzle exit radius, re. A numerical example of Equation (24) is also provided in 
the Appendix, Example 1. 

Examination of Equation (24) suggests that for each set of M and  7 , a 
separate Mach number chart like Figure 3 must be constructed.  For many variations 
in Me and  7 , the computations become quite excessive.  However, by considering a 
specified gas (7 fixed), a mathematical simplification of Equation (24) is 
possible.  Let M' designate Cue  local Mach number at the point (h,6) in the flow 
field of a sonic nozzle (Me ■ 1.0); and, M, the local Mach number at the same point 
(h, 0) in the flow field of a nozzle with an exit Mach number, M , other than one. 
The ratio of specific heats, 7 , is the same for both cases. 



For a sonic nozzle, M = 1.0, re = r., and, hence, 1. 

Substitution of these terms into Equation (24) results in: 

M' 

1-7 

7 -1 

r ,     , (E'-l)/       ,\ 1-7   /      ,\ 

7+1 

i   '     \-2 
zr]     (i-usii) 

1/2 

\rt \ 2i 
1 

-1, 

1/2 

where 

E' (72-l) +   7V72-1 

(25) 

(26) 

In the general case, for a nozzle exit Mach number other than one, the 
local Mach number, M, is given directly by Equation (24).  Combining Equations (25) 
and (24), 

y '     A ' 
(  E , *   h 

1 

M    ■ Jj \A, , V el 

(cos 6) 
(E-l)   y+l\   1-7 

1/2 
■ X±l   ' LLiil 

2        7+l 

1-7    ^ 
I 

" 1 ( 

1/2 

M' 1 

E'  h \ — h 

I-2  7 
(E'-l) 

( cos ö) M1'7 1/2 
JLii 
7 + 1, 

1-7   ^ 

-1/ 

TTT 

(27) 

For — »1, the terms of the left hand side of the numerator of Equation (27) are 
e 

large compared to unity.  That is. 

)i2 K K 
-2 

(cosÖ ) 
(E-l) 1-7 

1/2 -I 1-7 

JLll 
1 

i  ^ 1 /  »v 

J 
E  *  h 1    (co^) 

j2  A   r 

(E-l) 1-7 
1/2 -, 1-7 

7-H 
7+1 (28) 

c,     h     h Since — = — 
r.     r 
*     e 

' -r^ , then ^ > ^  »1 

-8- 



By a similar argument, the denominator of Equation (27) can be written: 

.E' Ih     ,   n. 
\ y 17-1  (cose ) 

S.        1 r+ ; 

(E'-l) 

2 

1-7 
1/2 

7 -1 
7+1/ 

1-7 

i v y 

J 

r     .-2 
2~ .—    (cose ) 

(E'l) 

M \ 

Ml 1-7 

(29) 

From Equations (28) and (29), Equation (27) now becomes: 

M 
M' 

where E is defined by Equation (13) and E' by Equation (26). 

1-7 

1 E 
E' 

(E-E'f 
2 

( cosb ) (30) 

Having once constructed tb« flow field for a sonic nozzle from Equation 
(25) for a given gas, the Mach number, M, in Lhe flow field of a nozzle with exit 
Mach numbers other than one can be readily determined from Equation (30),  In other 
words, for a given gas (7 fixed), plots of Equation (25) and (30) are sufficient to 
establish the flow field Mach numbers for several nozzle exit conditions. 
Equations (25) and (30) are plotted in Figures 4(a) and 4(b), respectively, for 
7 »1.4.  An example calculation to demonstrate the use of these two charts is 
provided in the Appendix, Example 2. 

In preliminary des'gn and proposal studies, wherein various nozzle exit 
conditions and gases may be up er investigation, plots of Equations (25) and (30) 
similar to that in Figures 4',a) and 4(b) for other gases should be of considerable 
value. 

•9- 



SECTION 3 

RESULTS AND DISCUSSION 

Flow field Mach numbers computed by the present approximate method are 
compared with available solutions by the method of characteristics for sever/ ' gases 
and nozzles exhausting into a vacuum. 

Comparisons are presented in Figures 5 and 6 for h/re < 35.  Figure 5 
shows a comparison over the entire flow field for M * 2.94 and 7 ■ 1.4 
(Reference 2, for a 15-degree conical nozzle);* and, in Figure 6, the Mach number 
distribution along the jet centerline is compared for Me » 1.0 and 7 ■ 1.4 
(Reference 3, for a nearly sonic orifice).  Also shown in Figure 6 is the first 
order solution based on Equation (2). 

Figures 7 and 8 show Mach number comparisons for higher values of h/r 
(between 40 and 600).  The entire flow field is compared in Figure 7 for M ■ 3.93 
and 7 = 1.26 (Reference 4 for a 15-degree semidivergence nozzle angle). Axial Mach 
number comparisons are presented in Figure 8 for Me = 4.0 and 7 = 1.24 (Reference 4 
for a 20-degree semidivergence nozzle angle) . 

Examining the axial Mach number distribution in Figures 5 through 8 (shown 
directly in Figures 6 and 8 aid along the axis 0 » 0 in Figures 5 and 7) the 
present method, in general, is seen to overestimate the Mach number (relative to the 
Mach number by the method of characteristics) at a given value of X/re along the axis 
Inasmuch as the comparisons presented in Figures 5 and 6 are for relatively low 
values of h/re, the agreeuient with characteristics solutions is surprisingly good. 
Note, for example, in Figure 5 at X/re = 25.4, and in Figure 6 at X/r  - 20, the 
axial Mach number computed by the present method are in error by roughly 2 percent. 

* In the development of this approximate method the mass flux / V A  into the 
control surface was taken to be constant, i.e., parallel nozzfe6 eFor a conical 
nozzle this is still a reasonable approximation and the method should be valid 
for conical nozzles as well. 

-10- 



relative to those by the method of characteristics. At larger values of h/r , where 
the radial flow assumption is more appropriate, better agreement is evidenced.  In 
Figure 7, at X/te « 134, and in Figure 8 at X/re « 500, the relative errors in axial 
Mach number are on the order of 1 percent. An examination of the axial Mach number 
distribution in Figure 6 reveals that the present method represents a substantial 
improvement over the first order solution (Reference 1). At X/re ■ 20, the relative 
error in axial Mach number is reduced from 16 percent (first order solution) to 
2 percent by the present solution. Note also that the present solution converges 
toward the characteristics solution as X/re increases; whereas, the first order 
solution does not show this trend. 

Normal to the Jet centerline, the present method predicts the general 
shape or the Mach contours fairly accurately (see Figures 5 and 7).  For the same 
constant Mach number, it is seen that the two curves (approximate and characteris- 
tics solutions) cross each other.  Evidently, at the point of intersection, the 
agreement between the two solutions is exact.  Over the entire flow field, however, 
no consistency is evidenced with respect to the angle 6  at which this crossover 
occurs , 

The deviations discussed above are attributed to the assumed density pro- 
file on which the present method is bassd.  The assumed density profile, Equation (/'), 
does not satisfy the boundary conditions at the edge of the jet.  That is, the 
cosine distribution of Equation (4) presumes a boundary (M = o0 ) at Ö =90 degrees, 
whereas, in theory, the exhaust flow from a nozzle into a vacuum can expand to an 
angle greater than 90 degrees, depending on the gas ratio of specific heats, and the 
nozzle geometry.  Better correlation with the method of characteristics should be 
realized by considering the flow past 90 degrees.  Evidently, a Density distribution 
other than the present cosine function must be assumed. 

No general criteria, applicable for all gases and nozzle geometries, has 
been established with regard to the lower limit (ll- ) of applicability for the 

^e 

present method.  However, an examination of several theoretical streamline patterns 
for nozzles exhausting into a vacuum (References 2 and 5) has indicated that for 
7 «1.4 and Me ^_ 3, the lower limit may be taken as h/re = 10 

The present approximate method can be extended to estimate Mach number 
contours for a rocket exhausting into a near vacuum environment (such as in a 
vacuum chamber). Whereas the flow field in a vacuum is shock free, the flow behind 
a rocket exhausting into a finite pressure region (at rest) is characterized by a 
curved shock which closely follows the jet boundary and eventually returns to the 
Jet axis as a normal shock further downstream of the nozzle exit.  The adjustment of 
flow to the ambient pressure occurs in the outer region between the shock and jet 
boundary.  Interior of the shock, the flow is unaffected by the ambient pressure and 
is identical to the corresponding portion of a vacuum Jet flow field having the same 

Me and 7 • 

•ll' 
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APPENDIX 

EXAMPLE  CALCULATIONS 

P - P(h,e) 

NOZZLE EXIT 
M   .   r 

The present method can be utilized to determine properties at the point P 
in the flow of a nozzle exhausting Into a vacuum. Toe method is applicable for 
h/re »1. For a given gas specific heat ratio (7), nozzle dimension (re), and 
either (Ae/A*) or Me, properties at the   point P can be determined by either of the 
following two methods: 

(1) The basic solution derived from continuity and momentum 
considerations:  Equation (24) can be solved directly for 
the Mach number. 

(2) The generalized solution based on a sonic nozzle flow 
field.  Combined plots of Equations (25) and (30) provide 
a rapid means for calculating the flow field behind a 
nozzle having exit Mach numbers other than one. 

Example calculations are presented for 7 -1.4.  In Example 1, the local Mach 
number at the point P is determined directly from Equation (24). The same problem 
is solved in Example 2 using the generalized procedure based on a sonic nozzle flow 
field (Equations 25 and 30). 

-13- 



EXAMPLE CALCULATIONS 

Example 1  (Direct application of Equation 24) 

Given; M», = 3.0, r0   - 2  Inch, 7-1.4 
Calculate:   Local Mach number, M, at the point h 

h A* 
(a)  Determine — , E, and —— : 

r„ A 
e e 

40  inch,   Ö   -  30° 

7~rr      from NACA   1135   for M    - 3.0,    7-1.4 
4.235 e 

h_ 
r 

40 in 
2  in 

20 

1 + 
7 M 

A 1 + 1 + 
1 

(7-1)M* \        7Mi 

Equation   (13) 

1  + I 

(1.4)(3)' 

A 1 + 
(1.4-l)(3), 

1  + 
1 

1.4(3') 

6.43 

(b)    The Mach  number,  M,   is  calculated   from Equation  24: 

M il 
1 

7-1 \ 
E     _A*    h 
2      Ar1 

e I   e / 
(CO80) 

E'1IX±1    l"7  IXiil   1/2 

2   I ,7+1 

1-7 
1/2 

M 2      J 16.43 
1.4-lll     2 4.235 

1 (20)'2   (cos 30°) 
<6-43-1>1ii4il|   

l-1-4 

1    2 

M 

1.4-1 
1.4+lj 

ii .78 

1/2 
(1-1.4) 

■] 
1/2 

14- 



EXAMPLE CALCULATIONS 

Example 2  (From combined plots of Equations 25 and 30) 

Given:     Mg - 3.0, re « 2 inch, 7 - 1 .A 
Calculate:  Local Mach number, M, at the point h » 40 inch and 9 30° 

it h 
(a)    Determine —7— and    — 

A r. e * 

;   -„     from NAD.   1135   for M     =  3.0,    7   =   1 .4 
4 .235 e 

h_ 
r, r

0 V    A, 
^2      V 4.235 

2 

h 
r. 

41.2 

(b)     Find M'   from Figure   3(a)     (sonic   nozzle   flow  field,    7   =   1.4): 

For — 
r* 

- 41.2 and 6 - 30°, from Figure 3(a) 

M'  - 12.75 

(c) Find M/M' from Figure 3(b)  (Mach number transformations-curves, 7 - 1.4) 

For M  - 3.0 and 0 - 30° 

M/M' - 0.922 

(d) Then: 

M - 0.922 M'  - 0.922 (12.75) 

M 11.75 
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